Микроэлектронные преобразователи давления серии РТМ

- Разрешающая способность 0,01 %
- \triangleright Основная погрешность ±0,25 %; ± 0,5 %
- Диапазон измерений 0÷0,16 / 0÷100 МПа
- ➤ Диапазон температуры контролируемой среды от -40 до +100°C
- $> 3^{x}$ кратные перегрузки по давлению
- ▶ Циклопрочность свыше 10⁶ циклов
- > Защита от воздействия электромагнитных полей согласно ГОСТ Р 51522 для оборудования класса Б
- Прочный герметичный корпус из нержавеющей стали

ПРИМЕНЕНИЕ

- ★ Промышленная автоматика
- ★ Нефтегазовая промышленность
- ★ Гидравлика / Пневматика
- ★ Насосные станции / Компрессоры
- ★ Теплоучет

ЭКСКЛЮЗИВНЫЕ ОСОБЕННОСТИ

- ✓ Чувствительным элементом преобразователей является двухслойная сапфиро-титановая мембрана с монокристаллическими кремниевыми тензорезисторами (технология «кремний на сапфире»).
- ✓ Монокристаллическая сапфировая мембрана является идеальным упругим элементом и в соединении с титаном приобретает лидирующее качество по уровню деформаций, сохраняет упругие и изолирующие свойства до 500°C.
- ✓ Монокристаллические кремниевые тензорезисторы соединены с сапфиром на атомарном уровне (метод гетероэпитаксии) и работают практически без гистерезиса и усталостных явлений во времени.
- ✓ Уникальные изолирующие свойства и радиационная стойкость сапфира позволяют эксплуатировать чувствительный элемент в температурном диапазоне от -200 до +200°C, при высоких электромагнитных помехах и воздействии радиации.
- ✓ Чувствительные элементы изготавливаются групповыми методами твердотельной технологии микроэлектроники и имеют высокое качество и хорошую воспроизводимость выходных параметров.
- ✓ Оптимальные эксплуатационные характеристики преобразователей, такие как стабильность, воспроизводимость и помехозащищенность выходного сигнала, достигнуты за счет применения специализированной электронной схемы высокой степени интеграции с цифровой обработкой сигнала
- ✓ Высокая надежность чувствительного элемента и электронной схемы не требует коррекции диапазона выходного сигнала при эксплуатации.

диапазоны давления

Верхний предел	МПа	0,16	0,25	0,4	0,6	1,0	1,6	2,5	4,0	6,0	10	16	25	40	60	100
давления																
Давление перегрузки	МПа	0,48	0,75	1,2	1,8	3,0	4,8	7,5	12	18	30	48	75	100	120	150
Давление продавливания	МПа	0,64	1,0	1,6	2,4	4,0	6,4	10	16	24	40	64	100	160	150	200

ХАРАКТЕРИСТИКИ

Исполнение

Выходной сигнал

Сопротивление

нагрузки Напряжение

питания

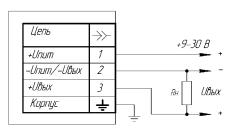
		типовое значение	максимум	
Основная пограничесть		0,3	0,51	
Основная погрешность		0,15	$0,25^2$	
Суммарная погрешность в диапазоне температур от +5 до +50°C	% от диапазона	0,45	0,7	
Дополнительная		0,25	0,451	
погрешность от воздействия температуры		0,15	0,252	
		окружающей среды	измеряемой среды	
Диапазон температуры	$^{\circ}\mathrm{C}$	-40+85°C	-40+100°C	
		+5+50°C	+5+50°C	
Macca	Γ	не более 150		

PTM3

0,5÷4,5 B

R=1÷10 кОм

9÷30 B


Схема внешних

электрических соединений

Преобразователи РТМ1

Цепь	\Rightarrow	+9-30 B
+Unum	1	+
+Юых , -Ипит	2	- (20.4
	3	RH/0-1K 4-20MA
Корпус	÷	
	Ţ	

Преобразователи РТМ2, РТМ3

PTM1

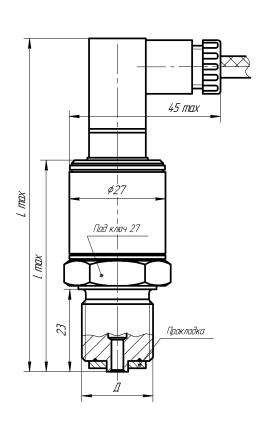
4÷20 мА

 $R \le (U_{\text{пит}}-8)/0,02$

9÷30 B

PTM2

0÷5 B


R=1÷10 кОм

9÷30 B

 $^{^1}$ для преобразователей с диапазоном температуры окружающей среды от -40 до +85°C 2 для преобразователей с диапазоном температуры окружающей среды от +5 до +50°C

Габаритные и присоединительные размеры

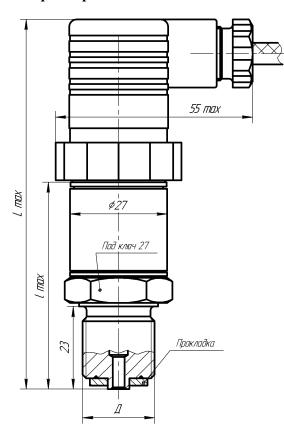
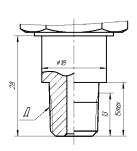
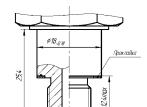




Рисунок 1

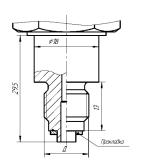


Рисунок 2

Рисунок 3

Рисунок 4

Рисунок 5

Условное обозначение преобразователей	Диаметр резьбы штуцера преобразователей (Д), мм	Рисунок	L, мм	1, мм	
PTMC1-M20	M20x1,5-8g	1	95	58	
PTMC1-M14	M14x1,5-8g	1 и 4			
PTMC1-M12	M12x1,25-8g	1 и 4	102	65	
PTMC1-G1/4	G1/4-A	1 и 4			
PTMC1-K1/4"	К1/4" ГОСТ6111-52	1 и 3	100	63	
PTMC1-M14A	M14x1,5-8g	1 и 5	98	61	
PTMC1-M12A	M12x1,25-8g	1 и 5			
PTMC1-G1/4A	G1/4-A 1 и				
PTMC2-M20	M20x1,5-8g	2	103	57	
PTMC2-M14	M14x1,5-8g	2 и 4		64	
PTMC2-M12	M12x1,25-8g	2 и 4	110		
PTMC2-G1/4	G1/4-A	2 и 4			
PTMC2-K1/4"	К1/4" ГОСТ6111-52	2 и 3	108	62	
PTMC2-M14A	M14x1,5-8g	2 и 5			
PTMC2-M12A	M12x1,25-8g	2 и 5	106	60	
PTMC2-G1/4A	G1/4-A	2 и 5			

Структура условного обозначения преобразователей

PTM X - XXX - XXX - XXX

Серия

Конструктивное исполнение

Выходной сигнал

- $1 4 \div 20 \text{ MA}$
- 2 0÷5 B
- $3 0.5 \div 4.5 B$

Верхний предел измеряемого давления, МПа

0,16; 0,25; 0,4; 0,6; 1,0; 1,6; 2,5; 4,0; 6,0;

10; 16; 25; 40; 60; 100

Предел допускаемой погрешности

- 0,25 % основная погрешность (для преобразователей предназначенных для работы в диапазоне температур от +5 до +50 °C);
- 0,5 % основная погрешность (для преобразователей предназначенных для работы в диапазоне температур от -40 до +85 °C);
- 0,7 % суммарная погрешность в диапазоне температур от +5 до +50 °C)

Вид электрического соединения

С1 – соединитель серии P2

C2 – соединитель серии GDM

Тип присоединительной резьбы штицера

M20 – метрическая резьба M20x1,5

М14 – метрическая резьба М14х1,5

М12 – метрическая резьба M12x1,25

G1/4 – трубная циллиндрическая резьба G1/4-A

К1/4 – коническая дюймовая резьба К1/4" ГОСТ 6111–52

М14A – метрическая резьба М14х1,5 с уплотнением по торцу

М12A – метрическая резьба М12х1,25 с уплотнением по торцу

G1/4A – трубная циллиндрическая резьба G1/4–A с уплотнением по торуу